The metafor Package

A Meta-Analysis Package for R

User Tools

Site Tools


analyses

Analysis Examples

The metafor package implements various meta-analytic models, methods, and techniques that have been described in the literature. The links below demonstrate how the models, methods, and techniques described in the respective references can be applied via the metafor package. The items are organized by topic (therefore, articles covering multiple topics may be listed multiple times). Alternatively, you can jump to the references at the bottom of the page for the list of articles in alphabetical order.

Note: If an example does not work properly, try installing the development version of the metafor package as described here.

Books on Meta-Analysis

Equal-, Fixed-, Random-, and Mixed-Effects Models

Multivariate/Multilevel Meta-Analysis Models

Meta-Analysis of Odds Ratios with the Conditional Logistic Model

Meta-Analysis of Odds Ratios with Peto's Method

Meta-Analysis of Proportions

Meta-Analysis of Incidence Rates and Rate Ratios

Meta-Analysis of 2×2 Tables and Person-Time Data using the Mantel-Haenszel Method

The use of the Mantel-Haenszel method for meta-analyzing risk differences, risk ratios, and odds ratios (for 2×2 table data) and for meta-analyzing incidence rate differences and incidence rate ratios (for two-group person-time data) is illustrated in the following article.

Effect Size Measures for Pretest Posttest Control Group Designs

The article below discusses the calculation of effect size measures for pretest posttest control group designs.

Heterogeneity Estimation in Meta-Analysis

Best Linear Unbiased Predictions

Meta-Analysis with Mixture Models

References

Berkey, C. S., Hoaglin, D. C., Mosteller, F., & Colditz, G. A. (1995). A random-effects regression model for meta-analysis. Statistics in Medicine, 14(4), 395-411.

Berkey, C. S., Hoaglin, D. C., Antczak-Bouckoms, A., Mosteller, F., & Colditz, G. A. (1998). Meta-analysis of multiple outcomes by regression with random effects. Statistics in Medicine, 17(22), 2537-2550.

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. Chichester, UK: Wiley.

Cooper, H., Hedges, L. V., & Valentine, J. V. (Eds.) (2019). The handbook of research synthesis and meta-analysis (3rd ed.). New York: Russell Sage Foundation.

Credé, M., Roch, S. G. & Kieszczynka, U. M. (2010). Class attendance in college: A meta-analytic review of the relationship of class attendance with grades and student characteristics. Review of Educational Research, 80(2), 272–295.

DerSimonian, R., & Kacker, R. (2007). Random-effects model for meta-analysis of clinical trials: An update. Contemporary Clinical Trials, 28(2), 105-114.

Gleser, L. J., & Olkin, I. (2009). Stochastically dependent effect sizes. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 357–376). New York: Russell Sage Foundation.

Konstantopoulos, S. (2011). Fixed effects and variance components estimation in three-level meta-analysis. Research Synthesis Methods, 2(1), 61-76.

Lipsey, M. W., & Wilson, D. B. (2001). Practical meta-analysis. Thousand Oaks, CA: Sage.

Miller, J. J. (1978). The inverse of the Freeman-Tukey double arcsine transformation. American Statistician, 32(4), 138.

Morris, S. B. (2008). Estimating effect sizes from pretest-posttest-control group designs. Organizational Research Methods, 11(2), 364-386.

Normand, S. T. (1999). Meta-analysis: Formulating, evaluating, combining, and reporting. Statistics in Medicine, 18(3), 321-359.

Raudenbush, S. W., & Bryk, A. S. (1985). Empirical Bayes meta-analysis. Journal of Educational Statistics, 10(2), 75-98.

Raudenbush, S. W. (2009). Analyzing effect sizes: Random effects models. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 295–315). New York: Russell Sage Foundation.

Rothman, K. J., Greenland, S., & Lash, T. L. (2008). Modern epidemiology (3rd ed.). Philadelphia: Lippincott Williams & Wilkins.

Rothstein, H. R., Sutton, A. J., & Borenstein, M. (Eds.) (2005). Publication bias in meta-analysis: Prevention, assessment and adjustment. Chichester, UK: Wiley.

Stijnen, T., Hamza, T. H., & Ozdemir, P. (2010). Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data. Statistics in Medicine, 29(29), 3046-3067.

van Houwelingen, H. C., Zwinderman, K. H., & Stijnen, T. (1993). A bivariate approach to meta-analysis. Statistics in Medicine, 12(24), 2273-2284.

van Houwelingen, H. C., Arends, L. R., & Stijnen, T. (2002). Advanced methods in meta-analysis: Multivariate approach and meta-regression. Statistics in Medicine, 21(4), 589-624.

Viechtbauer, W. (2005). Bias and efficiency of meta-analytic variance estimators in the random-effects model. Journal of Educational and Behavioral Statistics, 30(3), 261-293.

Viechtbauer, W. (2007). Confidence intervals for the amount of heterogeneity in meta-analysis. Statistics in Medicine, 26(1), 37-52.

Viechtbauer, W. (2007). Accounting for heterogeneity via random-effects models and moderator analyses in meta-analysis. Zeitschrift für Psychologie / Journal of Psychology, 215(2), 104-121.

Yusuf, S., Peto, R., Lewis, J., Collins, R., & Sleight, P. (1985). Beta blockade during and after myocardial infarction: An overview of the randomized trials. Progress in Cardiovascular Disease, 27(5), 335-371.

analyses.txt · Last modified: 2022/08/22 17:33 by Wolfgang Viechtbauer